
The Magazine for Agile Developers and Agile Testers

© Tyler Olson - Fotolia.com

October 2010

issue 4www.agilerecord.com	 free digital version	 made in Germany

49www.agilerecord.com

The software business resides in a constant crisis. This crisis
has already lasted since the sixties, and every decade since then
seems to have had an answer to it. Among the most popular and
most recent movements were the Software Engineering and the
Agile movement. In his book Software Craftsmanship - The New
Imperative [1] Pete McBreen argues against the engineering me-
taphor and explains why it just holds for very large or very small
projects, but not for the majority, the medium sized software de-
velopment projects.

As Albert Einstein said, “We cannot solve our problems with the
same thinking we used when we created them”. So far, every
aspect of the software crisis turned out to be self inflicted in or-
der to sell training or educational courses on the solution that
happened to be mainstream at the time. Since essentially, all
models are wrong, but some are useful (George Box), this article
will take a closer look at the useful aspects of the latest answers
to the software crisis, software engineering and craftsmanship.

To avoid any confusion, the term software development in this ar-
ticle will mean programming, testing, documenting and delivery.
Similarly, a software developer may be a programmer as well as
a tester, a technical writer or a release manager. I will provide a
compelling view on the overall development process and compa-
re it to the terms we may have adapted from similar models like
Software Engineering or Software Craftsmanship.

From Software Engineering...
Engineering consists of many trade offs. For example, an engi-
neer developing a car makes several trade offs:

•	 fuel consumption vs. horse power

•	 horse power vs. final price

•	 engine size vs. car weight.

An engineer considers these variables when constructing a car
and uses a trade off decision to achieve a certain goal that the

car manufacturer would like to reach. Thereby he will ensure that
the car is safe enough given the time he has to develop the car.

Software programmers as well as software testers also deal with
trade offs in their daily work. For example, a software tester con-
siders the cost of automation and the value of exploration. The
more time the tester spends on automating tests, the less time
there is for exploring the product. The more time is spent on ex-
ploration, the less time will be available to automate regression
tests for later re use. Figure 1 illustrates this trade off.

The level of automated testing constitutes another trade off deci-
sion. Automating a test at a high system level comes with the risk
of reduced stability due to many dependencies in the surroun-
ding code. Automating the same test at a lower unit level may
not cover inter module integration problems or violated contracts
between two modules. Figure 2 shows this trade off.

©
 M

arzanna Syncerz - Fotolia.com

Developing Software Development
by Markus Gärtner

Figure 1: The exploration vs. automation trade off in software testing

50 www.agilerecord.com

Similarly, there are four such trade offs mentioned in the Agile
Manifesto. The last sentence makes them explicit:

“That is, while there is value in the items on the right, we value
the items on the left more.”

Using the same graphical representation as before, figures 3(a)
3(d) illustrate the values from the Agile Manifesto:

At times a software project calls for more documentation. The
project members by then are better off spending more time on
documentation and less time on creating the software, thereby
creating less software. Similarly, for a non collaborative customer
more time may be spent on negotiating the contract. The trade
offs between individuals and interactions as opposed to process-
es and tools as well as responding to change opposed to follow-
ing a plan need to be decided for each software project. Agile
methods prefer the light-weight decisions to these trade offs, but
keep themselves open for heavy weight approaches when project
and context call for it.

... towards craftsmanship ...
In his book[1], Pete McBreen describes the facets of crafts-
manship by and large. We have to keep in mind, though, that
craftsmanship just like engineering provides another model on
how software development can work. This model is suitable for
understanding the basic principles, but, as with every model, it

leaves out essential details resulting in a simplified view on the
overall system.

McBreen’s main point is that the software engineering metaphor
does not provide a way to introduce people new to software de-
velopment to their work. Therefore he introduces the craft meta-
phor. The Software Engineering model does not provide an an-
swer on how to teach new junior programmers, testers, technical
writers, and delivery managers on their job. And in fact, Prof. Dr.
Edsger W. Dijkstra already noticed this in 1988. Back then, Dijk-
stra wrote an article on the cruelty of really teaching computer
science [2]. According to Dijkstra, the engineering metaphor for
software development and delivery leaves too much room for
misconceptions, since the model lacks essential details.

The craft analogy provides a model for teaching people new to
software development on the job, and does so in a collabora-
tive manner by choosing practices to follow, deliberate learning
opportunities and providing the proper slack to learn new tech-
niques and practices. All these aspects are crucial to keep the de-
velopment process vital. Experienced people teach their younger
colleagues. The younger colleagues learn how to do software
development while working on a project. By taking the lessons
learned directly into practice, new and inexperienced workers get
to know how to develop software in a particular context. Over
time, this approach creates a solid basis for further development
in software and as well as personal.

... and beyond
There are other aspects in the craft metaphor, although these
ideas, too, had been flowing around since the earlier days of the
Software Engineering movement. Taking pride in your daily work,
caring for the needs of the customer, and providing the best
product within the given time, money and quality considerations
that the customer made. Of course, every software development
team member is asked to provide their feedback on the feasibili-
ty of the product to be created. This includes providing a personal
view on the trade offs that each individual makes to estimate the
targeted costs and dates.

Software Development
Dijkstra wrote in late 1988 about the cruelty of analogies [2].
Likewise, a few years earlier Frederick P. Brooks discussed the
essence and the accidents of past software problems [3]. Brooks
stated that he did not expect any major breakthrough in the soft-
ware world during the ten years between 1986 and 1996 that
would improve software development by any order of magnitude.
Reflecting back on the 1990s, his point seems to hold to a cer-
tain degree.

Since these two pioneers in the field of software development
wrote down the prospects of future evolutions, another decade
has past. Reflecting on the points they made about a quarter of a
century ago, most of them still hold. However, the past ten years
of software development with Agile methods, test driven devel-
opment and exploratory testing approaches show some benefits
in practice. What we as a software producing industry need to
keep in mind, however, is the fact that software engineering as

Figure 3: The four Agile value statements as trade offs

Figure 2: The composition decomposition trade off in software testing

51www.agilerecord.com

well as software craftsmanship are analogies, or merely models.
They provide heuristics, and heuristics are fallible. On the other
hand, these models provide useful insights that help us under-
stand some fractions of our work. The models focus on a certain
aspect of the development process, while leaving out details that
may be essential at times but not for the current model in use.

From the engineering metaphor, trade offs are useful. Given the
complexity of most software projects, trade offs provide a way
to keep the project under control, while still delivering working
software. Systems thinking can help to see the dynamics at play
to make decisions based on trade offs. From the craft analogy,
apprenticeships help to teach people on the job and help them
master their skills. Where traditional education systems fail, the
appealing of direct cooperation with an apprentice helps to teach
people relevant facets of their day to day work.

While the analogies help, we need to keep in mind what Alistair
Cockburn found out in his studies on software projects [4]:

•	 Almost any methodology can be made to work on some proj-
ects.

•	 Any methodology can manage to fail on some projects.

That said, the analogies apply at times. We need to learn when a
model or analogy applies in order to solve a specific problem, and
when to use another model. No single analogy holds all the time,
so finally creating and maintaining a set of analogies is essential
for the people in software development projects, in order to com-
municate and collaborate. ■

References
[1]	 Software Craftsmanship The New Imperative, Pete Mc-

Breen, Addison Wesley, 2001

[2]	 On the cruelty of really teaching computing science, Prof.
Dr. Edsger W. Dijkstra, University of Texas, December 1988

[3]	 No Silver Bullet Essence and Accidents of Software Engi-
neering, Frederick P. Brooks, Jr., Computer Magazine, April
1987

[4]	 Characterizing people as non linear, first order components
in software development, Alistair Cockburn, Humans and
Technology, 1999

Markus Gärtner
is a senior software de-
veloper for it-agile GmbH
in Hamburg, Germany.
Personally committed to
Agile methods, he believes
in continuous improve-
ment in software testing
and programming through
skills. Markus co-founded
the European chapter on

Weekend Testing in 2010. He blogs at blog.shino.de
and is a black-belt in the Miagi-Do school of software
testing.

> About the author

